焊管厂家
免费服务热线

Free service

hotline

010-00000000
焊管厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

Boost电路的一种软开关实现方法

发布时间:2020-07-21 18:04:28 阅读: 来源:焊管厂家

摘要:提出了一种Boost电路软开关实现方法,即同步整流加上电感电流反向。根据两个开关管实现软开关的条件不同,提出了强管和弱管的概念,给出了满足软开关条件的设计方法。一个24V输入,40V/2.5A输出,开关频率为200kHz的同步Boost变换器样机进一步验证了上述方法的正确性,其满载效率达到了96.9%

本文引用地址:关键词:升压电路;软开关;同步整流

0 引言

轻小化是目前电源产品追求的目标。而提高开关频率可以减小电感、电容等元件的体积。但是,开关频率提高的瓶颈是器件的开关损耗,于是软开关技术就应运而生。一般,要实现比较理想的软开关效果,都需要有一个或一个以上的辅助开关为主开关创造软开关的条件,同时希望辅助开关本身也能实现软开关。

Boost电路作为一种最基本的DC/DC拓扑而广泛应用于各种电源产品中。由于Boost电路只包含一个开关,所以,要实现软开关往往要附加很多有源或无源的额外电路,增加了变换器的成本,降低了变换器的可靠性。

Boost电路除了有一个开关管外还有一个二极管。在较低压输出的场合,本身就希望用一个MOSFET来替换二极管(同步整流),从而获得比较高的效率。如果能利用这个同步开关作为主开关的辅助管,来创造软开关条件,同时本身又能实现软开关,那将是一个比较好的方案。

本文提出了一种Boost电路实现软开关的方法。该方案适用于输出电压较低的场合。

1 工作原理

图1所示的是具有两个开关管的同步Boost电路。其两个开关互补导通,中间有一定的死区防止共态导通,如图2所示。通常设计中电感上的电流为一个方向,如图2第5个波形所示。考虑到开关的结电容以及死区时间,一个周期可以分为5个阶段,各个阶段的等效电路如图3所示。下面简单描述了电感电流不改变方向的同步Boost电路的工作原理。在这种设计下,S2可以实现软开关,

图1 同步Boost变换器

图2 电感电流不反向时的主要工作波形

(a)Stagel[t0,t1] (b)Stage2[t1,t2]

(c)Stage3[t2,t3] (d)Stage4[t3,t4]

(e)Stage5[t4,t5]

图3 电感电流不反向时各阶段等效电路

但是S1只能工作在硬开关状态。

1)阶段1〔t0~t1〕 该阶段,S1导通,L上承受输入电压,L上的电流线性增加。在t1时刻,S1关断,该阶段结束。

2)阶段2〔t1~t2〕 S1关断后,电感电流对S1的结电容进行充电,使S2的结电容进行放电,S2的漏源电压可以近似认为线性下降,直到下降到零,该阶段结束。

3)阶段3〔t2~t3〕 当S2的漏源电压下降到零之后,S2的寄生二极管就导通,将S2的漏源电压箝在零电压状态,也就是为S2的零电压导通创造了条件。

4)阶段4〔t3~t4〕 S2的门极变为高电平,S2零电压开通。电感L上的电流又流过S2。L上承受输出电压和输入电压之差,电流线性减小,直到S2关断,该阶段结束。

5)阶段5〔t4~t5〕 此时电感L上的电流方向仍然为正,所以该电流只能转移到S2的寄生二极管上,而无法对S1的结电容进行放电。因此,S1是工作在硬开关状态的。

接着S1导通,进入下一个周期。从以上的分析可以看到,S2实现了软开关,但是S1并没有实现软开关。其原因是S2关断后,电感上的电流方向是正的,无法使S1的结电容进行放电。但是,如果将L设计得足够小,让电感电流在S2关断时为负的,如图4所示,就可以对S1的结电容进行放电而实现S1的软开关了。

图4 电感电流反向时的主要工作波形

济南吸脂

合肥面部填充

广州牙齿矫正价格

长春热玛吉

相关阅读